32 lines
1.0 KiB
Python
Executable File
32 lines
1.0 KiB
Python
Executable File
#!/usr/bin/env python
|
|
|
|
import subprocess, multiprocessing as mp, warnings, pandas as pd
|
|
from tabulate import tabulate
|
|
warnings.filterwarnings("ignore")
|
|
R, G, B, W = (f'\x1b[{x}m' for x in (31, 32, 34, 0))
|
|
subprocess.run('neofetch')
|
|
print(f'{R}$ sysbench cpu --threads={core} run | grep "events per second"{W}'
|
|
|
|
def speed(core):
|
|
output = subprocess.run(
|
|
f'sysbench cpu --threads={core} run | grep "events per second"',
|
|
shell=True, capture_output=True, text=True).stdout.split()[-1]
|
|
return float(output)
|
|
|
|
df = []
|
|
for core in range(1, mp.cpu_count()+1):
|
|
s = speed(core)
|
|
row = {
|
|
'#Threads': core,
|
|
'Throughput': s,
|
|
'(per-core)': s/core
|
|
}
|
|
df.append(row)
|
|
df = pd.DataFrame(df)
|
|
df.to_csv('bench.csv', index=False)
|
|
|
|
df.iloc[:, 0] = df.iloc[:, 0].apply(lambda s: f'{R}{s}{W}')
|
|
df.iloc[:, 1] = df.iloc[:, 1].apply(lambda s: f'{G}{int(s)}{W}')
|
|
df.iloc[:, 2] = df.iloc[:, 2].apply(lambda s: f'{B}{int(s)}{W}')
|
|
print(tabulate(df, headers='keys', tablefmt='rounded_outline', showindex=False))
|