Files
win32.run/static/html/visualizers/8.html
2023-02-13 19:32:10 +07:00

324 lines
8.1 KiB
HTML

<html>
<head>
<style>
html, body, canvas {
display: block;
width: 100%;
height: 100%;
margin: 0;
position: fixed;
background: black;
}
</style>
</head>
<!-- CodePen Home
your actual body
foretoo
https://codepen.io/foretoo/pen/WNzPjgo -->
<body>
<canvas id="canvas"></canvas>
<script type="x-shader/x-vertex" id="vertex_shader">
varying vec3 vPos;
varying float vNoise;
uniform float time;
uniform float size;
#include <snoise>
float PI = 3.14159265;
void main() {
float bt = time / 16.0;
float st = time / 12.0;
// CLOUDS NOISE
vec3 bp = position * vec3(0.33, 1.0, 0.33) * 2.1;
vec3 sp = position * vec3(0.25, 1.0, 0.25) * 5.5;
float bn = // 0.0;
snoise(vec4(
cos(bt) * bp.x - sin(bt) * bp.z,
bp.y + bt,
sin(bt) * bp.x + cos(bt) * bp.z,
0.0
)) + 1.0;
float sn = // 0.0;
snoise(vec4(
cos(st) * sp.x - sin(st) * sp.z,
sp.y + st,
sin(st) * sp.x + cos(st) * sp.z,
0.0
)) + 1.0;
// Get (0-1) final noise
float n = (sn + bn) * 0.25;
// Clear poles
n = n - abs(sin(position.y * 0.4));
// Extract clouds
n = step(0.47, n);
// if cloud go to an orbit
vPos = (1.0 - n) * position + n * normalize(position) * 1.05;
vNoise = n;
vec4 mvPosition = modelViewMatrix * vec4(vPos, 1.0);
gl_PointSize = size * 0.1 * (55.5 / -mvPosition.z);
gl_Position = projectionMatrix * mvPosition;
}
</script>
<script type="x-shader/x-fragment" id="fragment_shader">
uniform float time;
varying vec3 vPos;
varying float vNoise;
float PI = 3.14159265;
void main() {
float t = time / 5.0;
float ty = (vPos.y - t) * 3.33;
float R = (sin(ty ) + 1.0) / 2.0 + vNoise;
float G = (sin(ty + PI * 0.67) + 1.0) / 3.0 + vNoise;
float B = (sin(ty + PI * 1.33) + 1.0) / 2.0 + vNoise;
gl_FragColor = vec4(R, G, B, 1.0);
}
</script>
<script type="x-shader/x-fragment" id="simplex_noise">
// Simplex 4D Noise
// by Ian McEwan, Ashima Arts
//
vec4 permute(vec4 x){return mod(((x*34.0)+1.0)*x, 289.0);}
float permute(float x){return floor(mod(((x*34.0)+1.0)*x, 289.0));}
vec4 taylorInvSqrt(vec4 r){return 1.79284291400159 - 0.85373472095314 * r;}
float taylorInvSqrt(float r){return 1.79284291400159 - 0.85373472095314 * r;}
vec4 grad4(float j, vec4 ip){
const vec4 ones = vec4(1.0, 1.0, 1.0, -1.0);
vec4 p,s;
p.xyz = floor( fract (vec3(j) * ip.xyz) * 7.0) * ip.z - 1.0;
p.w = 1.5 - dot(abs(p.xyz), ones.xyz);
s = vec4(lessThan(p, vec4(0.0)));
p.xyz = p.xyz + (s.xyz*2.0 - 1.0) * s.www;
return p;
}
float snoise(vec4 v){
const vec2 C = vec2( 0.138196601125010504, // (5 - sqrt(5))/20 G4
0.309016994374947451); // (sqrt(5) - 1)/4 F4
// First corner
vec4 i = floor(v + dot(v, C.yyyy) );
vec4 x0 = v - i + dot(i, C.xxxx);
// Other corners
// Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
vec4 i0;
vec3 isX = step( x0.yzw, x0.xxx );
vec3 isYZ = step( x0.zww, x0.yyz );
// i0.x = dot( isX, vec3( 1.0 ) );
i0.x = isX.x + isX.y + isX.z;
i0.yzw = 1.0 - isX;
// i0.y += dot( isYZ.xy, vec2( 1.0 ) );
i0.y += isYZ.x + isYZ.y;
i0.zw += 1.0 - isYZ.xy;
i0.z += isYZ.z;
i0.w += 1.0 - isYZ.z;
// i0 now contains the unique values 0,1,2,3 in each channel
vec4 i3 = clamp( i0, 0.0, 1.0 );
vec4 i2 = clamp( i0-1.0, 0.0, 1.0 );
vec4 i1 = clamp( i0-2.0, 0.0, 1.0 );
// x0 = x0 - 0.0 + 0.0 * C
vec4 x1 = x0 - i1 + 1.0 * C.xxxx;
vec4 x2 = x0 - i2 + 2.0 * C.xxxx;
vec4 x3 = x0 - i3 + 3.0 * C.xxxx;
vec4 x4 = x0 - 1.0 + 4.0 * C.xxxx;
// Permutations
i = mod(i, 289.0);
float j0 = permute( permute( permute( permute(i.w) + i.z) + i.y) + i.x);
vec4 j1 = permute( permute( permute( permute (
i.w + vec4(i1.w, i2.w, i3.w, 1.0 ))
+ i.z + vec4(i1.z, i2.z, i3.z, 1.0 ))
+ i.y + vec4(i1.y, i2.y, i3.y, 1.0 ))
+ i.x + vec4(i1.x, i2.x, i3.x, 1.0 ));
// Gradients
// ( 7*7*6 points uniformly over a cube, mapped onto a 4-octahedron.)
// 7*7*6 = 294, which is close to the ring size 17*17 = 289.
vec4 ip = vec4(1.0/294.0, 1.0/49.0, 1.0/7.0, 0.0) ;
vec4 p0 = grad4(j0, ip);
vec4 p1 = grad4(j1.x, ip);
vec4 p2 = grad4(j1.y, ip);
vec4 p3 = grad4(j1.z, ip);
vec4 p4 = grad4(j1.w, ip);
// Normalise gradients
vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
p4 *= taylorInvSqrt(dot(p4,p4));
// Mix contributions from the five corners
vec3 m0 = max(0.6 - vec3(dot(x0,x0), dot(x1,x1), dot(x2,x2)), 0.0);
vec2 m1 = max(0.6 - vec2(dot(x3,x3), dot(x4,x4) ), 0.0);
m0 = m0 * m0;
m1 = m1 * m1;
return 49.0 * ( dot(m0*m0, vec3( dot( p0, x0 ), dot( p1, x1 ), dot( p2, x2 )))
+ dot(m1*m1, vec2( dot( p3, x3 ), dot( p4, x4 ) ) ) ) ;
}
</script>
<script type="module">
import * as THREE from "https://cdn.skypack.dev/three@0.136.0"
import { OrbitControls } from
"https://cdn.skypack.dev/three@0.136.0/examples/jsm/controls/OrbitControls"
import { MeshSurfaceSampler } from
"https://cdn.skypack.dev/three@0.136.0/examples/jsm/math/MeshSurfaceSampler.js"
import { EffectComposer } from
"https://cdn.skypack.dev/three@0.136.0/examples/jsm/postprocessing/EffectComposer.js"
import { RenderPass } from
"https://cdn.skypack.dev/three@0.136.0/examples/jsm/postprocessing/RenderPass.js"
import { UnrealBloomPass } from
"https://cdn.skypack.dev/three@0.136.0/examples/jsm/postprocessing/UnrealBloomPass.js"
console.clear()
// ------------------------ //
// INIT
const scene = new THREE.Scene()
const camera = new THREE.PerspectiveCamera(60, innerWidth / innerHeight, 1, 1000)
camera.position.set(0, 1, 3)
const renderer = new THREE.WebGLRenderer({ canvas })
renderer.setSize(innerWidth, innerHeight)
renderer.setPixelRatio(Math.min(devicePixelRatio, 2))
const orbit = new OrbitControls(camera, canvas)
orbit.enableDamping = true
// ------------------------ //
// Geometry sampler
const dodecahedron = new THREE.DodecahedronBufferGeometry(1, 0)
dodecahedron.rotateX(Math.random() * Math.PI * 2)
dodecahedron.rotateY(Math.random() * Math.PI * 2)
const sampler = new MeshSurfaceSampler(new THREE.Mesh(dodecahedron))
.setWeightAttribute(null)
.build()
// ------------------------ //
// Points data
const count = 55000
const position = new Float32Array(count * 3)
const pos = new THREE.Vector3()
for (let i = 0; i < count; i++) {
sampler.sample(pos)
position[i * 3 + 0] = pos.x
position[i * 3 + 1] = pos.y
position[i * 3 + 2] = pos.z
}
// ------------------------ //
// Points mesh
const points_geometry = new THREE.BufferGeometry()
points_geometry.setAttribute("position", new THREE.BufferAttribute(position, 3))
const points_material = new THREE.ShaderMaterial({
uniforms: {
time: { value: 0 },
size: { value: calcPointSize() },
},
vertexShader: vertex_shader.textContent.replace(
"#include <snoise>",
simplex_noise.textContent
),
fragmentShader: fragment_shader.textContent,
})
const points = new THREE.Points(points_geometry, points_material)
scene.add(points)
// ------------------------ //
// Bloom effect
const renderScene = new RenderPass(scene, camera)
const bloomPass = new UnrealBloomPass(
{ x: innerWidth, y: innerHeight },
3 * (1 / renderer.getPixelRatio()), // strength
2 * (1 / renderer.getPixelRatio()), // radius
0.99, // threshold
)
const composer = new EffectComposer(renderer)
composer.addPass(renderScene)
composer.addPass(bloomPass)
// ------------------------ //
// Looper
const loop = () => {
points.rotateY(0.002)
points_material.uniforms.time.value += 0.05
orbit.update()
composer.render()
requestAnimationFrame(loop)
}
requestAnimationFrame(loop)
// ------------------------ //
// Helpers
onresize = () => {
points_material.uniforms.size.value = calcPointSize()
bloomPass.setSize(innerWidth, innerHeight)
camera.aspect = innerWidth / innerHeight
camera.updateProjectionMatrix()
composer.setSize(innerWidth, innerHeight)
renderer.setSize(innerWidth, innerHeight)
}
function calcPointSize() {
return renderer.getPixelRatio() * Math.min(innerWidth, innerHeight) * 0.001
}
</script>
</body>
</html>